dr hab. Alexander Felshtyn, prof. US

    dr hab. Alexander Felshtyn, prof. US

    • Informacje ogólne

      Stopień naukowy: doktor habilitowany
      Stanowisko: profesor
      Zakład: Zakład Teorii Liczb
      Numer pokoju: 412
      Telefon: +48 91 444 12 78
      E-mail:  fels@wmf.univ.szczecin.pl
      Konsultacje: piątek 15:00 – 16:30
    • Ksiązki

      1. Fel’shtyn A. L. Dynamical zeta functions, Nielsen theory and Reidemeister torsion. Memoirs of the American Mathematical Society, v.147, no.699, September 2000, 146 pages.
      2. Fel’shtyn A.L., Mostepanenko V.M., Slobodinskaja T.V. Systems of differential equations. St. Petersburg Technology Institute, Department of Mathematics. 1986, 40 pages.
    • Artykuły

      1. Fel’shtyn A.L. The structure of phase diagrams of three-dimensional systems of Morse-Smale type. Di . Equat., v. 15, n. 5, 1979, p. 949- 950.
      2. Fel’shtyn A.L. On the Morsem- Smale systems on three – dimensional sphere. Vest. Lening. Univ. Math., n. 7, 1979, 45 -49.
      3. Fel’shtyn A.L. The phase diagrams of three{dimensional Morse-Smale systems. Doctoral Thesis. 1979, 104 p.
      4. Fel’shtyn A.L. Morse inequalities for Morse-Smale systems. Proceedings of the Ninth International conference on nonlinear oscillations. Kiev, 1981, v. 2, p. 389 -391.
      5. Fel’shtyn A.L. Morse inequalities for Morse-Smale systems. Proceedings of Conference on Di erencional equations and applications. Ruse, Bulgaria. 1981 , 756 – 759.
      6. Fel’shtyn A.L. Morse-Smale systems and homology theory. Izvest. vyssh. uchebn. zaved. Mat., n. 9, 1982, p. 58 -66.
      7. Fel’shtyn A.L. Morse-Smale systems without closed trajectories. Izvest. vysch. uchebn. zaved. Mat., n. 10, 1983, 77 -82.
      8. Fel’shtyn A.L., Gontareva I.B. An analogue of Morse inequalities for domains of attraction. Vest. Lening. Univ. Math., v. 17, n. 2, 1984, 16 – 20.1
      9. Fel’shtyn A.L., Pilyugina V.B. Nielsen’s zeta-function. Zap. nauch. sem. Lenin. otd. Mat. inst. Steklowa. v. 143, 1985, 156 -161.
      10. Fel’shtyn A.L, Pilyugina V.B. The Nielsen zeta function. Funct. Anal. Appl., v. 19, n. 4, 1985, 61 -67.
      11. Fel’shtyn A.L. The Nielsen, Artin-Mazur and Lefschetz zeta functions. Proceedings of the Third Conference on Di erentional equations and applications. Rouse, Bulgaria, 1985, 437 -440.
      12. Fel’shtyn A.L., Pilyugina V.B. Two theorems on the Nielsen zeta function. Proceedings of the Third Conference on Di erential equations and applications. Rouse, Bulgaria, 1985, 441 – 444.
      13. Fel’shtyn A.L. A new zeta function in Nielsen theory and a universal product formula for dynamical zeta-functions. Functional Anal. Appl., v. 21, n. 2, 1987, 90 -91.
      14. Fel’shtyn A.L. Zeta functions in Nielsen’s theory. Funct. Anal. Appl., v. 22, n. 1, 1988, 87 – 88.
      15. Fel’shtyn A.L. New zeta functions for dynamical systems and Nielsen fixed point theory. Lecture Notes in Mathematics , v. 1346, 1988, 33-55.
      16. Fel’shtyn A.L. Reidemeister and Nielsen zeta functions. Zap. nauch. sem. Lening. otdel. Mat. inst. Steklowa., v. 167, 1988, 164 – 168.
      17. Fel’shtyn A.L. The Reidemeister zeta function and the computation of the Nielsen zeta function. Colloquium Mathematicum., v. LXII, Fasc. 1, 1991, 154 -166.
      18. Fel’shtyn A.L. The Rochlin invariant, eta-invariant and Reidemeister torsion. Algebra and Analysis. Leningrad Mathemat. Journ., v. 3, n. 4, 1991, 197-206.
      19. Fel’shtyn A.L. The Reidemeister, Nielsen zeta functions and the Reidemeister
        torsion in dynamical systems theory. Mathematica Gottingensis. Heft 47, October 1991, 32 p.
      20. Fel’shtyn A.L. The connection between the Reidemeister torsion, etainvariant,
        the Rochlin invariant and theta multipliers via the dynamical zeta functions. Mathematica Gottingensis. Heft 50, November 1991, 20 p. 2
      21. Fel’shtyn A.L. Attractors, Integrable Hamiltonian systems and the Reidemeister torsion. Mathematica Gottingensis. Heft 52, November 1991, 11p.
      22. Fel’shtyn A.L. The Reidemeister, Nielsen zeta function and the Reidemeister torsion in dynamical systems theory. Zap. nauch. sem. Lenin. otd. Math. inst. Steklowa. Geometry and Topology I, v.193, 1991, 119 -142.
      23. Fel’shtyn A.L., Hill R. Dynamical zeta functions, Nielsen theory and Reidemeister torsion. Mathematica Gottingensis. Heft 22, August 1992, 36 p.
      24. Fel’shtyn A.L.Zeta functions of Reidemeister and Nielsen. Topology and its applications.Trudy Mat. Inst. Steklov., v.193, 1992, p.203-208.
      25. Fel’shtyn A.L.The connection between the Reidemeister torsion, eta-invariant, the Rochlin invariant and theta multipliers via the dynamical zeta functions. Colloquium Math. Soc. Janos Bolyai. Topology, Theory and applications, II, v.55, 1993, 199-215, North-Holland, Amsterdam.
      26. Fel’shtyn A.L., Hill R. Dynamical zeta functions, Nielsen theory and Reidemeister torsion. Contemporary Mathematics, v.152, 1993, 43-69.
      27. Fel’shtyn A.L. The Reidemeister, Nielsen zeta function and the Reidemeister torsion in dynamical systems theory. Advances in Soviet Mathematics, v.18, 1994, 123-145.
      28. Fel’shtyn A.L. Attractors, integrable hamiltonian systems and the Reidemeister
        torsion. Progress in Nonlinear Di erential Equations and Their Applications, v.12, 1994, 227-234. Birkhauser. Basel.
      29. Fel’shtyn A.L. , Hill R.The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion. K-theory, v.8, n.4, 1994, 367-393.
      30. Fel’shtyn A.L. , Hill R., Wong P. Reidemeister numbers of equivariant maps. Topology and its Applications, vol. 67 , 1995, 119 – 131.
      31. Fel’shtyn A.L. Dynamical zeta functions, Nielsen theory and Reidemeister torsion. Habilitationsschrift. 150 pages, 1996. Greifswald. 3
      32. Fel’shtyn A.L., Hill R. Congruences for Reidemeister and Nielsen numbers. Proceedings of the International conference Topological Methods in Nonlinear Analysis. Gdansk, Poland, 1997, 55-79.
      33. Fel’shtyn A.L., Pilyugina V.B. Topology of an attraction domain, dynamical zeta functions and Reidemeister torsion. Topological methods of nonlinear analysis, v.9, n.2, 1997, p.259-279.
      34. Fel’shtyn A.L., Hill R. Congruences for Reidemeister and Nielsen numbers. Algebra and Analysis. St. Petersburg Mathematical Journal, v.10, n.3, 1998, 163-182.
      35. Fel’shtyn A.L., Hill R. Trace formulae, zeta functions, congruences and Reidemeister torsion in Nielsen theory. Forum Mathematicum, v.10, n.6, 1998, 641-663.
      36. Fel’shtyn A.L., Hill R., Dynamical zeta functions, congruences in Nielsen theory and Reidemeister torsion. Banach Center Publications, v.49, 1999, 77-116.
      37. Fel’shtyn A.L., Hector Sanchez-Morgado. Reidemeister torsion and Integrable Hamiltonian systems. Internat. Jour. Math. Math. Scien. vol. 22, No. 4(1999), 689-704.
      38. Fel’shtyn A.L. Nielsen zeta function, 3-manifolds and asymptotic expansions in Nielsen theory. Representation theory, Dynamical systems, Combinatorial and Algorithmic Methods. Part 5. Zapiski Nauchnyh Seminarov POMI, vol.266, 2000, 312-330.
      39. Fel’shtyn Alexander. Uber die Klassi kation dreidimensionaler Mannigfaltigkeiten.
        Mathematik- Interdisziplinar. Shaker-Verlag, Aachen 2000, 129-137.
      40. Fel’shtyn A.L., Hector Sanchez-Morgado. Reidemeister torsion and Integrable Hamiltonian systems, II. Algebra and Analysis. St. Petersburg Mathematical Journal, v.12, n.6, 2000, 194-216.
      41. Fel’shtyn A.L. The Reidemeister number of any automorphism of a Gromov hyperbolic group is in nite. Geometry and Topology. Part 6. Zapiski Nauchnych Seminarov POMI, vol. 279, 2001, 229-241.
      42. Fel’shtyn A.L. Zeta functions, 3-manifolds and asymptotics in Nielsen theory. Topology and its Applications, v. 116, 2001, 43-55. 4
      43. Fel’shtyn A.L. Dynamical zeta functions and asymptotic expansions in Nielsen theory. Dynamical, Spectral, and Arithmetic Zeta Functions. Contemporary Mathematics, v. 290, 2002, 67-81.
      44. Fel’shtyn A.L. Reidemeister numbers. Topological Methods of Nonlinear
        Analysis, v.21, 2003, 147-154 .
      45. Fel’shtyn A.L. Floer homology, Nielsen theory and symplectic zeta functions. Proceedings of the Steklov Institute of Mathematics, Moscow, vol. 246, 2004, pp. 270-282.
      46. Alexander Fel’shtyn. Dynamical zeta functions and symplectic Floer homology. Contemporary Mathematics, 385, 2005, pp.187-203.
      47. Alexander Fel’shtyn and Evgenij Troitsky, A twisted Burnside theorem for countable groups and Reidemeister numbers, Noncommutative Geometry and Number Theory , Vieweg, Braunschweig, 2006, pp.141- 154.
      48. Alexander Fel’shtyn, Evgenij Troitsky, and Anatoly Vershik, Twisted Burnside theorem for type II1 groups: an example, Mathematical Research
        Letters 13(2006), no.5, 719 – 728.
      49. Alexander Fel’shtyn and Daciberg L. Goncalves. Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups, Algebra and Discrete Mathematics, no.3(2006), 36-48.
      50. Alexander Fel’shtyn , Nielsen number as a knot invariant, Banach Center Publications 77(2007), 69-74 .
      51. Alexander Fel’shtyn , Nielsen xed point theory and symplectic Floer homology, Banach Center Publications 77(2007), 75-87.
      52. Alexander Fel’shtyn and Evgenij Troitsky, Twisted Burnside-Frobenius theory for discrete groups, Journal Reine Angew. Math.(Crelle’s journal) 613(2007), 193-210.
      53. Alexander Fel’shtyn and Daciberg L. Goncalves, The Reidemeister number of any automorphism of Baumslag-Solitar group is in nite, Geometry and Dynamics of Groups and Spaces”, Progress in Mathematics, v.265(2008), 286-306.
      54. A. Fel’shtyn, F. Indukaev, and E. Troitsky, Twisted Burnside theorem for two- step torsion free nilpotent group. In: C*-algebras and elliptic theory. II Birkhauser Trends in Math. series, 2008, 87- 101.5
      55. Alexander Fel’shtyn and Evgenij Troitsky, Geometry of Reidemeister classes and twisted Burnside theorem, Journal of K-theory, vol 2, issue 3(2008), 463 – 506.
      56. Alexander Fel’shtyn and Evgenij Troitsky, Twisted conjugacy separable groups, E-print arXiv: math.GR/0606764. Preprint MPIM 2006- 81.
      57. A. Fel’shtyn,Y. Leonov, E. Troitsky, Reidemeister numbers of saturated weakly branch groups. Geometria Dedicata, v.134(2008), 61-73.
      58. Collin Bleak, Alexander Fel’shtyn, Daciberg Goncalves, Twisted conjugacy classes in R. Thompson’s group F. Paci c Journal of Mathematics, no.1, v.238(2008), 1 – 6.
      59. A. Fel’shtyn, E. Troitsky, Theorie de Burnside-Frobenius tordue pour les groupes virtuellement polycycliques. C. R. Acad. Sci. Paris, Ser. I, 346(2008), 1033-1038(presente par Jean-Pierre Serre).
      60. Alexander Fel’shtyn, Nielsen theory, Floer homology and a generalisation of the Poincare – Birkho theorem. Journal of Fixed Point Theory and Applications, no.2, v.3(2008), 191-214.
      61. Alexander Fel’shtyn, Bitwisted Burnside-Frobenius theorem and Dehn conjugacy problem. Algebraic Topology- Old and New. Banach Center Publications,vol.85(2009), 31 – 42.
      62. Alexander Fel’shtyn. New directions in Nielsen-Reidemeister theory, Topology and its Applications, 157(2010), 1724-1735.
      63. Alexander Fel’shtyn and Daciberg L. Goncalves, Twisted conjugacy classes in Symplectic groups, Mapping class groups and Braid groups (including an Appendix written with Francois Dahmani),Geometria Dedicata, 146(2010), 211 – 223.
      64. Alexander Fel’shtyn and Daciberg L. Goncalves, Reidemeister spectrum for Metabelian groups, International Journal of Algebra and Computation, International Journal of Algebra and Computation , vol.21, No. 3(2011), 1-16.