Środowe seminarium w IF - Wydział Matematyczno-Fizyczny

time and place:

  • Wednesday at 12:30 p.m.,
  • room 106, in the Faculty of Mathematics and Physics (1. floor)

convener:

  • Next seminar: 30.05.2018 - prof. dr. hab. Zbigniew Konrad Czerski

DATE SPEAKER TITLE
25.10.2017 M. Phil. Hussain Gohar Publiczna obrona rozprawy doktorskiej
22.11.2017 mgr Konrad Marosek Publiczna obrona rozprawy doktorskiej
29.11.2017 dr Wiktor Parol IFJ PAN Kraków „Experimental studies of the nuclear interaction via deuteron breakup reaction at intermediate energy range”
06.12.2017 dr. hab. Marcin Buchowiecki, prof. US „Ro-vibrational coupling in high temperature thermochemistry of diatomic molecules”
24.01.2018 dr hab. Ryhor Fedaruk, prof. US „Manifestation of a solid-state analog of vacuum Rabi splitting in EPR experiments”
07.03.2018 dr Vincenzo Salzano  „Comparing varying speed of light theories with cosmological data.”
14.03.2018 dr hab. Franco Ferrari, prof. US „Challenges  posed by radiation to space travels beyond the Low Earth Orbit (BLEO)”
18.04.2018 dr Manuel Kramer „Multiverse models in canonical quantum cosmology and their testability”
25.04.2018 prof. dr hab. Ewa Szuszkiewicz   „On the Laplace resonances in planetary systems”
16.05.2018 prof. Teresa Zwierko  SEMINARIUM NAUKOWE nt.: Wzrok w sporcie
30.05.2018 Prof. dr hab. Zbigniew Konrad Czerski TBA
6.06.2018 dr Tomasz Denkiewicz  „Singular models of the universe”
13.06.2018 dr Marcin Olszewski Widma NMR jąder kwadrupolowych w lokalnie nieuporządkowanych ciałach stałych”
20.06.2018 (to be announced)
27.06.2018 dr Natalia Targosz-Ślęczka „Studies of electron screening effect in deuteron fusion reactions”.
  • 16.05.2018 - dr. hab. Teresa Zwierko, prof. US

    SEMINARIUM NAUKOWE
    nt.: Wzrok w sporcie

    Podczas seminarium przedstawione zostaną projekty badawcze realizowane przez zespół naukowy
    laboratorium kinezjologii Centrum Badań Strukturalno-Funkcjonalnych Człowieka Wydziału Kultury
    Fizycznej i Promocji Zdrowia US. Wśród głównych zagadnień seminarium omówione zostaną tematy
    związane z wykorzystaniem badań elektrofizjologicznych układu wzrokowego w sporcie, badań
    funkcji okulomotorycznych przy użyciu mobilnego systemu eyetrackingowego w działaniach
    motorycznych, oraz badań eksperymentalnych nad wdrażaniem programów doskonalących funkcje
    percepcji wzrokowej u sportowców. W szczególności zaprezentowane zostaną metody pomiaru
    laboratoryjnego funkcji wzrokowych oraz pomiaru w warunkach specyfiki zachowań motorycznych.

    Data: środa, 16.05.2018
    Godzina: 12.30 -14.00
    Miejsce: Centrum Badań Strukturalno-Funkcjonalnych Człowieka WKFiPZ, ul. Narutowicza 17 C
    (wjazd od ul. Narutowicza lub wejście od ul. Głowackiego)

    Program seminarium

  • 25.04.2018 - prof. dr hab. Ewa Szuszkiewicz

    „On the Laplace resonances in planetary systems”

  • 18.04.2018 - dr Manuel Kramer

    Multiverse models in canonical quantum cosmology and their testability

    Abstract:
    The idea that our universe is part of a multiverse that consists of a multitude of other universes, which might even possess different physical constants and laws, is intriguing, but will remain speculative as long as one cannot find a way that other parts of the multiverse can have an observable effect onto our universe.

    In this talk, I will present multiverse models in the context of canonical quantum cosmology that are constructed within the framework of the so-called third quantization formalism, which results from a quantum-field-theoretical formulation of the Wheeler-DeWitt equation. These models will be analyzed with regard to their effects onto the cosmic microwave background (CMB) anisotropy spectrum.

    In the first model based on eternal inflation, the third quantization formalism converts the eternally inflating universe into an ensemble of sub-universes that exhibit a distinctive pre-inflationary phase. Assuming that our observable universe is represented by such a sub-universe, we calculate the effect of the pre-inflationary phase onto the primordial scalar power spectrum and find that there is a suppression of power on the largest scales followed by a bump leading to an enhancement. In order to get a sizable effect for the suppression to explain the observed quadrupole anomaly in the CMB, the bump is enhanced too much to be compatible with the CMB data.

    The second model involves an explicit quantum interaction between the sub-universes. Here, we obtain a different pre-inflationary phase that also leads to a suppression on large scales, but does not exhibit a prominent enhanced bump. Thus it fits the CMB data better and might even lead us towards an explanation of the CMB quadrupole discrepancy.

  • 14.03.2018 - dr hab. Franco Ferrari, prof. US

    Challenges  posed by radiation to space travels beyond the Low Earth Orbit (BLEO)

    Abstract:
    Human space exploration of Near Earth Objects (NEO’s) is on the verge of becoming of economic interest. Yet, there remain still a few factors posing serious limits to space travel. One of them is the contamination by ionizing radiation of cosmic origin. A first question whose answer has become urrgent is thus if we are able to estimate the risks posed by radiation on the health of a human crew in space. Despite many experiments in vitro and in vivo, the effects on humans of radiation consisting of heavy ions accelerated at relativistic speeds are still largely unknown. Such effects cannot be easily  extrapolated using the statistics based on well known events like the nuclear bombing of Hiroshima and Nagasaki or the several accidents on the Earth that have involved radioactive substances. Experiments with animals, usually irradiated with high doses of heavy ion particles, are useful only in part. In fact, high and acute doses do not reproduce the situations that are typical of a space mission to NEO’s, in which a dose of approximately 1Sv is delivered in the period of about one year. On the other side, experiments with intermediate doses and low dose rates are technically difficult as it is difficult to predict in the laboratory what will be their long term effects on animals. These limitations complicate also the achievement of the important goal of determining acceptable dose limits for humans. A second important question is therefore if there are alternative experimental setups that allow to improve our knowledge of the threats posed by radiation consisting of heavy ions to the health of humans. We will attempt during this talk to answer to both these questions.

  • 7.03.2018 - dr Vincenzo Salzano

    Comparing varying speed of light theories with cosmological data.

    Abstract: Varying constants theories have become well established alternative theories of gravity nowadays. In this talk we will focus on the “Varying speed of light” (VSL) theories, which have been long analyzed and debated in the last years, with multiple theoretical approaches but very few applications to observational data. We will follow two approaches. First, we will discuss a method we have developed aimed to measure the value of the speed of light at cosmological scales and at different epochs (redshifts), using multiple and independent data from galaxy surveys. Given the way it is built up, this method can unequivocally test the constancy of the speed of light on cosmological scales (up to some error depending on the architectural properties and the sensitivity of a given observational survey) and, thus, eventually confirm or reject VSL theories.” Second, we will discuss which kind of constraints are set up by present cosmological observations on VSL theories.

  • 24.01.2018 - prof. Ryhor Fedaruk, Uniwetsytet Szczeciński

    “Manifestation of a solid-state analog of vacuum Rabi splitting in EPR experiments”

  • 29.11.2017 - dr Wiktor Parol, Institute of Nuclear Physics Polish Academy of Sciences

    „Experimental studies of the nuclear interaction via deuteron breakup reaction at intermediate energy range”

    abstract abstrakt
  • 21.06.2017 - prof. dr hab. Ewa Szuszkiewicz

    The rising of a cradle of life: Formation and evolution of planetary systems

    There are various forms of life on the planet Earth, including the human kind. There is thus no wonder that a common belief is that planets offer favourable conditions, if not for the origin of life, at least for its development and evolution. In the first part of my lecture I will present the most interesting findings in our search for planets similar to Earth. Those findings provide more arguments supporting the conviction that planets are the most probable „cradles of life” in the Universe. Moreover, the discovery of „a second Earth” will be an important achievement, which will help us in understanding how our planet Earth, our Solar System and other planetary systems have been formed. In the second part of my lecture I will discuss the state-of-the-art of the formation and evolution of planetary systems with particular emphasis on the results obtained by my research group.

  • 14.06.2017 - dr inż. Grzegorz Jezierski

    Promieniowanie rentgenowskie wokół nas

    Promieniowanie rentgenowskie jest dzisiaj szeroko wykorzystywane już nie tylko w medycynie (diagnostyka oraz terapia) czy weterynarii, ale również w wielu dziedzinach przemysłu, rolnictwa i leśnictwa, produkcji żywności, farmaceutyków oraz kosmetyków, szeroko pojętego bezpieczeństwa (tzw. security), w ochronie środowiska naturalnego (np. przy separacji odpadów), w różnych dziedzinach nauki, ale także kultury i dziedzictwa narodowego (archeometria i historia kultury oraz sztuki). Natura i właściwości promieniowania rentgenowskiego pozwalają badać nie tylko wewnętrzne struktury różnych (wszystkich) materiałów i obiektów zarówno na poziomie makro jak i mikrostruktury, ale także dokonywać pomiarów masy i wymiarów detali, liczyć obiekty, mierzyć poziom napełnienia, stwierdzać brakujące elementy, określać skład chemiczny czy gęstość materiału (obiektu). Aparat rentgenowski tzw. dyfraktometr rentgenowski jest nadal podstawowym narzędziem do oceny struktury i budowy materii. Procesy produkcyjne w przemyśle stają się coraz szybsze a zarazem bardziej złożone. Nowe i coraz bardziej zróżnicowane technologie powodują konieczność stosowania takich rozwiązań w zakresie kontroli, które są w stanie uwidocznić ukryte lub bardzo małe struktury. Aby zapewnić bezpieczeństwo w dziedzinach takich jak: przemysł motoryzacyjny, aeronautyka, czy energetyka, niezbędna jest inspekcja stosowanych tam elementów zespołów czy połączeń. Ciągły trend w kierunku miniaturyzacji, a jednocześnie coraz większej zwartości układów elektronicznych w całym przemyśle elektronicznym pociąga za sobą konieczność stosowania kontroli rentgenowskiej, umożliwiającej uzyskiwanie dużych powiększeń przy zapewnieniu odpowiedniej rozdzielczości uzyskiwanego obrazu. Stąd też obserwuje się dzisiaj szybki rozwój tzw. mikroskopii rentgenowskiej przy inspekcji układów elektronicznych. Niezależnie od tego bardzo dynamicznie wzrasta liczba stosowanych nie tylko medycznych ale także przemysłowych mikro czy nanotomografów rentgenowskich, począwszy od całkowicie przenośnych po wielotonowe stacjonarne (np. do badania całych samochodów). Można więc rzec, że dzisiaj promieniowanie rentgenowskie jest wszechobecne w naszym otoczeniu.

  • 7.06.2017 dr Ihor D. Stolyarchuk

    I-VI based Diluted Magnetic Semiconductor Nanoparticles: Synthesis, Properties and Applications
    by dr Ihor D. Stolyarchuk
    Department of Physics of Semiconductors and Nanostructures, Yuriy Fedkovich Chernivtsi National University, Chernivtsi, Ukraine

    Over the past few decades, semiconductor nanoparticles (SNPs) have attracted great interest because of their unique properties and various potential applications in nanoscale photonic, light emitting diodes devices, solar cells and biomedical labeling. There is particular interest to transition metal-doped II–VI SNPs. Since these impurities can be paramagnetic, they introduce a localized spin into the nanoparticle, and form the so called diluted magnetic semiconductors (DMSs). DMSs are very promising materials for spintronic devices operating at room temperature. The present work is devoted to structural, optical, magneto-optical and related sensing properties of Mn-doped semiconductor CdS, CdTe, ZnO nanoparticles prepared by different physical and chemical methods. All the samples were characterized by optical absorption, photoluminescence, and Faraday rotation spectroscopy. Transmission electron microscopy and atomic force microscopy analyses confirmed the nanocrystallinity of all samples and allowed an estimate of the average size of nanoparticles. Optical spectra reveal a blue shift in the absorption edge and the exciton structure due to confinement effects in the studied samples. However, it was difficult to extract effect of Mn2+ ion doping on the absorption spectra for all the studied DMS nanoparticles. In contrast, contribution of magnetic ion doping was clearly visible from photoluminescence and Faraday rotation spectra. In photoluminescence spectra of Mn-doped DMS nanoparticles there appeared emission bands due to Mn2+ ions and their intensity increased with increasing of Mn2+ content. Faraday rotation spectra of the Cd1−xMnxTe/SiO2 and Zn1−xMnxO/PVA (polyvinylalcohol) composites demonstrate peculiarities, which are associated with both confinement effects and s, p–d exchange interactions. These nanocomposites are promising materials for Faraday effect based magnetic sensors for pulsed high magnetic fields measurements. Possible applications of SNPs for bioimaging will also be discussed.

  • 24.05.2017 - dr hab. Mykola Korynevskii, prof. US

    Fluctuations nanoclusters in a liquid magnetic Lattice-gas model

    We propose a statistical model for the description of fluctuation magnetic nanoclusters in a homogeneous infinite medium.The Ising-like Hamiltonian of a system is analysed using the self-consistent field approximation for the lattice-gas model. Exclusively direct spin–spin interactions are considered. A special role of a surface atoms and their interaction with the external medium are discussed in details. The grand thermodynamic potential of a system is calculated and other thermodynamic functions are obtained. A consistent set of equations for different order parameters (presenting both the radii of nanoclusters and their magnetization) is found. The essential role of the medium in the process of fluctuation nanoclusters arising is proved. The temperature dependence for the radii of the formed magnetic nanoclusteres is analysed.

  • 10.05.2017 - dr Dieter Hennig

    Principles of the modeling of large complex dynamical systems. Special aspect: Model order Reduction
    by Dieter Hennig (IFK/TU Dresden) and Carsten Lange (TU Dresden)

    Proper Orthogonal Decomposition (pattern reconstruction by data reducing/compression). The dimension of the original picture is a matrix with entries 900×600 (Pixel). In the 3 pictures of the Nuclear Training Reactor TU-Dresden the origin is reproduced with 2 (left), 30, 100 (right) proper orthogonal modes (POMs).

    In order to simulate the stability behavior of large complex systems in natural and technical sciences it is common practice in many laboratories to map the dynamical system into a system of coupled (nonlinear) partial differential equations (modeling process) and investigate the solution manifold of this system. In the framework of the reactor dynamics the equations of the neutron kinetic and the thermal hydraulics plus heat conduction describing the heat generation and heat transfer from the solid or liquid fuel to the flowing coolant are solved in the “large” system (termed also coupled) codes. To get a comprehensive overview of the stability “landscape” of the dynamical system, the solution manifold of the equation system must be known. A powerful approach to understand the nonlinear stability behavior under system parameter variations is the bifurcation analysis. Because the direct coupling of bifurcation codes with reactor dynamic (system) codes is extremely expensive, we use the so-called model order reduction (MOR) techniques as a very helpful approach. In the framework of this seminar some mathematical principles of MOR methods will be discussed and demonstrated at simple examples

  • 26.04.2017 - prof. dr hab. Mariusz P. Dąbrowski

    Hierarchy of varying speed of light c theories – theory and observations

    Varying speed of light theories (VSL) should be considered as another type of alternative gravity theories with an extra scalar field degree of freedom. Their formulation causes problems because of the violation of the light principle and relativity principle. There are a couple of physical contexts in which c appears and its role is fundamental. During my talk I will discuss some basic theoretical formulations of varying c theories and discuss their benefits as well as problems. Then, I will review some new cosmological tests of VSL theories. Finally, I will make a comparative statistical analysis of the basic theoretical frameworks.

  • 12.04.2017 - prof. Konrad Czerski

    W poszukiwaniu nowych jądrowych źródeł energii – co wydarzyło się w 2016?

  • 05.04.2017 - dr Jarosław Paturej

    Bottlebrush and cyclic macromolecules: How topology affects physical properties of polymers?

    Significant progress in polymerization techniques allows to synthesize macromolecules with complex, yet precisely controlled structure. Two distinct examples are branched-like bottlebrushes and ring-like polymers. During the talk I will demonstrate that variation of macromolecular architecture affects structural, mechanical, interfacial and frictional properties of polymers as compared to conventional linear chains.

  • 01.03.2017 - dr hab. Franco Ferrari, prof. US

    An application of the Wang-Landau Monte Carlo method to the modeling of the themal and mechanical behavior of knotted polymer rings in solutions

    The subject of this seminar are the properties and behavior in solutions of single closed polymer chains (rings) in the form of knots. The chains are defined on a simple cubic lattice. Their statistical properties are investigated by computing the expectation values of a few observables, namely the specific energy, the specific heat capacity and the gyration radius. In the case in which the chain is stretched by a tensile force directed along the z-axis, the average height of the point in which the force has been applied is measured too. The averages are computed exploiting a variant of the Wang-Landau Monte Carlo method. The algorithm has been suitably accelerated and parallelized in such a way that it is possible to sample a large number (from tens to hundreds of billions) of knot conformations. Several types of knots have been considered, including the trefoil, the figure-eight, the cinquefoil knots and many others. From the performed analysis it turns out that knotted polymer rings have a rich variety of different behaviors that can be used in order to tune the properties of polymer materials containing such knots. For instance, these polymers swell faster or slower when heated depending on the type of the knot and on the kind of interactions between the monomers. During the talk some interesting features of the stress relaxation of knotted polymer rings after the stretching force is removed will also be shown.

  • 18.01.2017 - prof. Jerzy Ciosłowski

    Rovibrational States of Wigner Molecules in Spherically Symmetric Confining Potentials

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the anomalous weak-confinement behavior of the 1S+ state of the four-electron species that is absent in its 1D+ companion of the strong-confinement regime.

  • 11.01.2017 - mgr Dorota Gajda Instytut Chemii i Techniki Jądrowej

    Analiza możliwości pozyskiwania uranu dla energetyki jądrowej z zasobów krajowych

    W związku ze wznowieniem planów budowy w Polsce pierwszej elektrowni jądrowej ponownie zaczęto rozpatrywać możliwość pozyskiwania paliwa jądrowego z naszych zasobów krajowych. W latach 2010-2013 prowadzono w Polsce badania dotyczące możliwości pozyskiwania uranu z rodzimych zasobów. Badania te obejmowały charakterystykę geologiczną oraz chemiczne aspekty separacji tego metalu z danego złoża. Badania geologiczne prowadził Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy i analizował takie zasoby jak: ordowickie łupki dictyonemowe obniżenia podlaskiego, piaskowce triasowe syneklizy perybałtyckiej oraz złoża położone w Sudetach, Górach Świętokrzyskich, Górnośląskim Zagłębiu Węglowym oraz oligoceńskie łupki warstw menilitowych Karpat. Badania dotyczące separacji oraz oczyszczania uranu były prowadzone w Instytucie Chemii i Techniki Jądrowej. Pierwszym etapem badań było ługowanie uranu z rud, gdzie badano stopień ekstrakcji tego metalu przy wykorzystaniu różnych ekstrahentów nieorganicznych (kwasów i alkaliów) oraz rodzaj i ilość dodawanego utleniacza. Kolejnym etapem była separacja uranu od metali towarzyszących, którą prowadzono równolegle dwoma metodami: metodą ekstrakcji rozpuszczalnikowej oraz metodą wymiany jonowej. Ostatnim elementem badań było wytrącenie yellowcake, czyli handlowej formy uranu. Dodatkowo w IChTJ badano możliwości pozyskiwania uranu jako produktu ubocznego z przemysłu wytwarzania nawozów fosforowych oraz z przemysłu miedziowego.

  • 14.12.2016 - dr hab. Marcin Buchowiecki, prof. US

    Challenges in molecular partition functions calculations

    Molecular partition function is a basic quantity that connects microscopic and macroscopic worlds. For chemical applications molecular partition functions are crucial for calculating equilibrium constants, rate constant of chemical reaction and corresponding isotope effects. In practice, a widely used rigid rotor harmonic approximation fails at high temperatures where potential energy surface inflects and does not look like harmonic potential any more (picture). Explicit summation of energy levels is also not possible for bigger molecules and higher temperatures. Abovementioned problems and possible solutions will be discussed.

  • 09.20.2016 - dr Andrzej Styszyński

    Dlaczego optyk okularowy powinien znać procedury doboru korekcji optycznej